Increased expression of the receptor for advanced glycation end-products in human peripheral neuropathies
نویسندگان
چکیده
BACKGROUND Diabetic neuropathy and idiopathic neuropathy are among the most prevalent neuropathies in human patients. The molecular mechanism underlying pathological changes observed in the affected nerve remains unclear but one candidate molecule, the receptor for advanced glycation end-products (RAGE), has recently gained attention as a potential contributor to neuropathy. Our previous studies revealed that RAGE expression is higher in porcine and murine diabetic nerve, contributing to the inflammatory mechanisms leading to diabetic neuropathy. Here, for the first time, we focused on the expression of RAGE in human peripheral nerve. METHODS Our study utilized de-identified human sural nerve surplus obtained from 5 non-neuropathic patients (control group), 6 patients with long-term mild-to-moderate diabetic neuropathy (diabetic group) and 5 patients with mild-to-moderate peripheral neuropathy of unknown etiology (idiopathic group). By using immunofluorescent staining and protein immunoblotting we studied the expression and colocalization patterns of RAGE and its ligands: carboxymethyllysine (CML), high mobility group box 1 (HMBG1) and mammalian Diaphanous 1 (mDia1) in control and neuropathic nerves. RESULTS We found that in a normal, healthy human nerve, RAGE is expressed in almost 30% of all nerve fibers and that number is higher in pathological states such as peripheral neuropathy. We established that the levels of RAGE and its pro-inflammatory ligands, CML and HMBG1, are higher in both idiopathic and diabetic nerve, while the expression of the RAGE cytoplasmic domain-binding partner, mDia1 is similar among control, diabetic, and idiopathic nerve. The highest number of double stained nerve fibers was noted for RAGE and CML: ∼76% (control), ∼91% (idiopathic) and ∼82% (diabetic) respectively. CONCLUSIONS Our data suggest roles for RAGE and its inflammatory ligands in human peripheral neuropathies and lay the foundation for further, more detailed and clinically oriented investigation involving these proteins and their roles in disorders of the human peripheral nerve.
منابع مشابه
Expression of the receptor of advanced glycation end-products (RAGE) and membranal location in peripheral blood mononuclear cells (PBMC) in obesity and insulin resistance
Objective(s): The present study aimed to evaluate the receptor of advanced glycation end-products (RAGE), NF-kB, NRF2 gene expression, and RAGE cell distribution in peripheral blood mononuclear cells (PBMC) in subjects with obesity and IR compared with healthy subjects.Materials and Methods: The mRNA expression levels of RAGE, NF-kB, NRF...
متن کاملAssessment of Oral Glycine and Lysine Therapy on Receptor for Advanced Glycation End Products and Transforming Growth Factor Beta Expression in the Kidney of Streptozotocin-Induced Diabetic Rats in Comparison with Normal Rats
Background & Aims: Today, diabetic nephropathy is considered to be one of the most common causes of end stage renal disease. Uncontrolled hyperglycemia, and consequently, production of advanced glycation end products activate pathways which play key roles in diabetic nephropathy. Among these pathways, high expression of receptor for advanced glycation end products (RAGE) and transforming growth...
متن کاملReceptor for advanced glycation end products involved in circulating endothelial cells release from human coronary endothelial cells induced by C-reactive protein
Objective(s): This study was designed to investigate the effect of receptor for advanced glycation end products (RAGE), S100A12 and C-reactive protein (CRP) on the release of circulating endothelial cells (CECs) from human coronary artery endothelial cells (HCAECs). Materials and Methods: HCAECs were cultured in increasing concentration of CRP (0, 12.5, 25, 50μg/ml) or S100A12 protein (0, 4, 1...
متن کاملAdvanced Glycation End-Products and Their Receptor-Mediated Roles: Inflammation and Oxidative Stress
Glycation is a protein modification, which results in a change in a protein structure. Glycation is believed to be the etiology of various age-related diseases such as diabetes mellitus and Alz-heimer’s disease (AD). Activation of microglia and resident macrophages in the brain by glycated proteins with subsequent oxidative stress and cytokine release may be an important factor in the progressi...
متن کاملRAGE Deficiency Improves Postinjury Sciatic Nerve Regeneration in Type 1 Diabetic Mice
Peripheral neuropathy and insensate limbs and digits cause significant morbidity in diabetic individuals. Previous studies showed that deletion of the receptor for advanced end-glycation products (RAGE) in mice was protective in long-term diabetic neuropathy. Here, we tested the hypothesis that RAGE suppresses effective axonal regeneration in superimposed acute peripheral nerve injury attributa...
متن کامل